Fractal Tilings Based on Dissections of Polyominoes

نویسنده

  • Robert W. Fathauer
چکیده

Polyominoes, shapes made up of squares connected edge-to-edge, provide a rich source of prototiles for edge-toedge fractal tilings. We give examples of fractal tilings with 2-fold and 4-fold rotational symmetry based on prototiles derived by dissecting polyominoes with 2-fold and 4-fold rotational symmetry, respectively. A systematic analysis is made of candidate prototiles based on lower-order polyominoes. In some of these fractal tilings, polyomino-shaped holes occur repeatedly with each new generation. We also give an example of a fractal knot created by marking such tiles with Celtic-knot-like graphics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Tilings of Quadrants and Rectangles and Rectangular Pattern

The problem of tiling rectangles by polyominoes generated large interest. A related one is the problem of tiling parallelograms by twisted polyominoes. Both problems are related with tilings of (skewed) quadrants by polyominoes. Indeed, if all tilings of a (skewed) quadrant by a tile set can be reduced to a tiling by congruent rectangles (parallelograms), this provides information about tilings...

متن کامل

Fractal Tilings Based on Dissections of Polyhexes

Polyhexes, shapes made up of regular hexagons connected edge-to-edge, provide a rich source of prototiles for edge-to-edge fractal tilings. Numerous examples are given of fractal tilings with 2-fold and 3-fold rotational symmetry based on prototiles derived by dissecting polyhexes with 2-fold and 3-fold rotational symmetry, respectively. A systematic analysis is made of candidate prototiles bas...

متن کامل

Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles

In this paper, we examine rigid tilings of the four quadrants in a Cartesian coordinate system by tiling sets consisting of L-shaped polyominoes and notched rectangles. The first tiling sets we consider consist of an L-shaped polyomino and a notched rectangle, appearing from the dissection of an n×n square, and of their symmetries about the first diagonal. In this case, a tiling of a quadrant i...

متن کامل

Polyominoes and Polyiamonds as Fundamental Domains of Isohedral Tilings with Rotational Symmetry

We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have 3-, 4-, or 6-fold rotational symmetry. The symmetry groups of such tilings are of types p3, p31m, p4, p4g, and p6. There are no isohedral tilings with p3m1, p4m, or p6m symmetry groups that have polyominoes or polyiamonds...

متن کامل

A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry

We show a simple method to generate polyominoes and polyiamonds that produce isohedral tilings with p3, p4 or p6 rotational symmetry by using n line segments between lattice points on a regular hexagonal, square and triangular lattice, respectively. We exhibit all possible tiles generated by this algorithm up to n = 9 for p3, n = 8 for p4, and n = 13 for p6. In particular, we determine for n ≤ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006